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 Variables Used in This Report 
Variable Units Definition 
𝑥 cm Position 
𝑡 s Time 
𝑢$⃗  cm/s Velocity 
𝜌 g/cm3 Mass density 
𝑛( 1 Ordinate vector 
𝜐 Hz Photon frequency in laboratory frame 
𝜈! Hz Photon frequency in comoving frame 
𝐼" erg/cm2/s/Hz/sr Specific intensity 
𝐸" erg/cm3/Hz Monochromatic radiation energy 

density 
𝐹⃗" erg/cm2/s/Hz Monochromatic radiation energy flux 
𝑷" erg/cm3/Hz Monochromatic radiation pressure 

tensor 
𝐵" erg/cm2/s/Hz/sr Planck black-body function 
𝐸 erg/cm3 Total radiation energy density 
𝐹⃗ erg/cm2/s Total radiation energy flux 
𝐵 erg/cm2/s/sr Frequency-integrated Planck function 
𝑇# K Electron temperature 
𝑇$ K Ion temperature 
𝜎% 1/cm Absorption cross-section 
𝜎& 1/cm Scattering cross-section 
𝜎' 1/cm Total cross-section 
𝜙 erg/g Gravitational potential 
𝑝# dyne/cm2 Electron pressure 
𝑝$ dyne/cm2 Ion pressure 
𝑈# erg/g Specific internal energy from 

electrons 
𝑈$ erg/g Specific internal energy from ions 
𝜆( erg/cm/s/K Thermal conduction coefficient 
𝜀# erg/s/g Electron specific energy deposition 

rate 
𝜀$ erg/s/g Ion specific energy deposition rate 
	𝟏 1 The identity tensor 

 Introduction 
Serrano is a software package for simulating photon transport in moving material. It presently supports 
1-D, unstructured 2-D for a wide variety of element types, and 3-D for tetrahedra and hexahedra. The 
package is designed to be a component of larger codes, such as radiation hydrodynamics codes. Only the 
radiation transport equations are solved by Serrano itself. 
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Serrano solves the photon transport equation in the Sn approximation in the laboratory frame. Only those 
material motion corrections required to conserve energy and momentum and to preserve the diffusion 
limit and the correct equilibrium state are included. 

 Governing Equations 
 Variables 

The Boltzmann equation for photon transport is (Lowrie & Morel, 1998) 
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This assumes  an isotropic and coherent scattering opacity.  In reality, electron scattering is neither 
isotropic nor coherent, although in the low-energy limit (Thompson scattering) it is very nearly coherent 
and its angular dependence is approximately a dipole scattering function, which behaves much like an 
isotropic scattering function in the diffusion limit. Future versions of Serrano will use the correct dipole 
scattering function, but for now, the assumption of isotropic scattering allows great simplification. 

In the Lagrangian frame, the Boltzmann equation becomes 
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Followng Lowrie and Morel, we omit all terms of order 𝑢 𝑐⁄  or greater that are not necessary to preserve 
the correct asymptotic diffusion limit in a moving medium. We are careful to note that the radiation 
quantities are expressed in the laboratory frame while the cross-sections, density, and temperature are 
comoving values.  This yields 
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We assume that Serrano is called by a host code that solves the hydrodynamics equations: 
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The exact form of the equations solved by the host code may differ from these, but appropriate 
modifications can be made to ensure conservative coupling between Serrano and its host. 
 
These hydrodynamics equations assume that the ion and electron distributions are Maxwellian, but at 
different ion and electron temperatures. This is justified because the large mass disparity between 
electrons and ions (𝑚$ = 1860𝐴𝑚*) means that electron-ion collisions will not exchange energy 
efficiently. Thus physical processes, such as radiation absorption, that couple to only one component of 
the plasma will tend to pull the two components out of equilibrium with each other. 
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 Conservation of Energy and Momentum 

The zeroth and  first moments of the transport equation are 
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A comparison of these equations with the host hydrodynamics equations (Equations 11 to 14) shows that 
Serrano and its host will conserve energy and momentum if the couplings to the host code are carried out 
correctly.  

 Temporal Discretization 
There are numerous temporal discretizations that one might employ to solve the governing equations. 
Serrano provides a flexible enough interface to support more than one time discretization. We will 
illustrate with the example of a predictor-corrector time discretization. 

In all cases, Serrano assumes an operator split, and solves the radiation transport portio of the split using 
a semi-implicit time discretization. Serrano relies on the host code to perform any remap of the radiation 
energy density that is required. This is best accomplished by including radiation energy per unit mass as a 
variable in the host code database, and treating it exactly like specific energy for purposes of remapping. 

 

 Predictor-Correct Time Discretization 

This is a  second-order explicit time discretization in which all quantities have the same time centering.  

The host hydrocode should perform the following steps: 

Remap: 

The host code first performs any mesh relaxation and remapping of variables. This step is highly host-
code specific. To satisfy energy conservation, the specific intensity $!,1

81
 should be advected like the 

specific energies 𝑈@.  
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Predict new velocities: 
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where i is a time level and a superscript asterisk indicates a predicted value from a step in an operator 
split. The cost code is expected to include a radiation acceleration term !
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supplied by Serrano. For a staggered-grid hydrodynamics spatial discretization, this will take the form of 
a radiation force applied to each node. 
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Predict new state: 
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where J is the Jacobian describing the deformation of the original Lagrangian mesh.The Jacobian 
typically corresponds to some Lagrangian control volume such as a cell volume. The host code is again 
expected to pass the starting and ending velocities  𝑢F⃗ @ and 𝑢F⃗ @A!∗  to Serrano so that Serrano can update the 
radiation specific intensity 𝐼& to reflect work done by the radiation force. 

Correct the velocity prediction: 
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The spatial discretization usually replaces the density with lumped mass, which is a Lagrangian constant, 
so the density average appearing in the equation is strictly a formality. The radiation force is normally 
fixed at its value at the start of the time step. Serrano has experimental options under development that 
relax this operator split. 

Correct the coordinate prediction: 
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Correct the state prediction: 
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Equation 29 accounts for both radiation work and changes in the control volume. It ensures conservation 
of energy. Note also that there is no 𝐼&,@A!∗  in this formulation, since the radiation force is not adjusted 
following the prediction step. 

The remaining calculations are performed by Serrano, which solves the radiation transport and coupled 
material energy equations 
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The host code then updates the final temperatures based on the final specific energies. 

 Solution Methods 

Equations 30 to 32 are not easy to solve. We first simplify by substituting Equations 33 to 35 into 
Equations 30 to 32, then solve Equation 31 for 𝑇$,@A!∗∗∗ : 

(36)				 𝑇$,@A!∗∗∗ = ℎ𝑇*,@A!∗∗∗ + 𝑆$ 	

where  
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We likewise solve for 𝑇*,@A!∗∗∗ : 

(39)				 𝑇*,@A!∗∗∗ = ℎ∫𝜎),&,@ 𝐸&,@A!𝑑𝜈 + 𝑆T 	
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And, finally, 
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We simplify further by using operator notation: 

(45)				 𝐿𝐼@A! = 𝑀𝛴𝐷𝐼@A! + 𝑆	

where L is the advection-removal operator, M is the moment to ordinate operator, Σ is the scattering 
operator, D is the ordinate to moment operator, and S is the source. M converts a moment representation 
of the radiation field, which for our purposes is almost always truncated at the zeroth moment, and 
converts it to an ordinate representation. D converts the ordinte representation to moments. Thus DM is 
the identity operator, though neither D nor M is usually square, let alone nonsingular. 

Much of the effort on Serrano has focused on efficiently computing the inverse of L, which is called the 
sweep operator, since its solution requires "sweeping" the mesh along ordinate directions. Given a sweep 
solver, we then solve 

(46)     𝐼@A! = 𝐿6!(𝑀𝛴𝐷𝐼@A! + 𝑆) 

Several solution methods are provided by Serrano for solvine Equation 46 for different conditions. 

Source Iteration. This method is useful in the streaming limit: 

(47)     𝐼@A!
([A!) = 𝐿6! -𝑀𝛴𝐷𝐼@A!

([) + 𝑆. 
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That is, for the current iterate I\A!
(]) , compute a source 𝑀Σ𝐷I\A!

(]) + S and then apply the sweep solver 𝐿6! to 
this source.  

Source iteration performs well in the streaming limit, where Σ	 is small. However, it performs increasingly 
poorly as one approaches the diffusion limit; although the method always converges, the spectral radius of 
the iteration scheme becomes arbitrarily close to unity. The primary value of source iteration is as a basis 
on which to build better schemes. 

Krylov Solve. Krylov methods perform reasonably well for quite a wide range of problems. There are 
numerous such. methods, all based (at least in theory) on constructing a solution from the Krylov 
sequence  

(48)				 𝑎@A!	 = 𝐴𝑎@ 	

where 𝑎@ is the Krylov sequence and A is the linear opertor to be inverted. For Serrano, 𝐴 = 𝐿6!𝑀Σ𝐷.  

Linear Multifrequency-Gray Acceleration. Both source iteration and Krylov solution converge well if 
the problem is not strongly scattering. If the problem is strongly scattering, so that it approaches the 
diffusion limit, convergence can be improved using linear multifrequency-gray (LMFG) acceleration as a 
preconditioner. 

This preconditioner is based on the observation that, if thermal reemission dominates, then the most 
slowly converging modes of the radiation field are the diffusive modes whose shape ζ_	is that of the 
reemission: 

(49)				 𝜁& =
A!

B!,36
2
(∆3

∫ A!
B!,36

2
(∆3

H&
	

For MFG-accelerated source iteration, we write 

(50)     𝐼@A!
([A!/() = 𝐿6! -𝑀𝛴𝐷𝐼@A!

([) + 𝑆. 

that is, we perform a source iteration step, but label the result 𝑘 + 1/2 rather than 𝑘 + 1. We then solve 
the equation 

(51)     −𝛻 ∙ 𝐷𝛻𝛿𝜙 + 𝜎𝛿𝜙 = 𝑅 

where 

(52)				 𝐷 = !
; ∫

a!
+!,3A

2
(∆3
𝑑𝜈	

(53)				 𝜎 = ∫-𝜎&,% − 𝜎&,: − -
"
,- ∫ 𝑓&𝑑𝜈. 𝜎),&,@. 𝜁&𝑑𝜈 +

!
"∆%
	

(54)				 𝑅 = - "
,- ∫ 𝑓&𝑑𝜈. -∫𝜎),&,@ -𝐸&

([A!/( − 𝐸&
([.𝑑𝜈.	

Then 
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(55)				 𝐼&,@A!
([A!) = 𝐼&,@A!

([A!/() + 𝜁&𝛿𝜙	
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